

THREE DISCIPLINE SPECIFIC
MULTI - DISCIPLINARY COURSE

DSC Courses

Sem.	Paper Code	Paper Level	Paper	Paper Description	Paper Type	TH	TU	Credit	
								L	T
1	MATHDSC101	100	DSC	Classical Algebra and Matrix Theory	TH	60	20	3	1
2	MATHDSC202	100	DSC	Calculus and Geometry	TH	60	20	3	1
3	-----	---	DSC	Real Analysis	TH	60	20	3	1
4	-----	---	DSC	Abstract and Linear Algebra	TH	60	20	3	1

DETAILED SYLLABUS

of

DSC COURSES

(semester wise)

SEMESTER-1										
Paper Description	Classical Algebra and Matrix Theory			Paper Code		MATHDSC101				
Paper (Type)	DSC Course (Theory)			Credit			Marks			
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
100	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

CLASSICAL ALGEBRA AND MATRIX THEORY

Classical Algebra:

Unit 1: 10 classes
 Complex numbers: Polar representation, De Moivre's theorem for rational indices and its applications. Logarithm, trigonometric, exponential and hyperbolic functions of complex variable.

Unit 2: 15 classes
 Theory of polynomial equations: Fundamental theorem of Classical Algebra (statement only). Location and nature of roots: Descartes' rule of signs. Relation between roots and coefficients. Solution methods for cubic and biquadratic poly. equations: Cardan's and Ferrari's method. Symmetric functions of roots, transformation of equation.

Unit 3: 8 classes
 Inequality: $AM \geq GM \geq HM$, weighted means and m -th power theorem (statement only), Cauchy-Schwarz inequality (statements only) and their applications.

Matrix Theory:

Unit 4: 15 classes
 Matrices: Elementary operations, elementary matrices, row/column equivalent matrix, echelon matrix, row/column reduced echelon matrix, rank of matrix, normal forms, congruence operations, congruence matrices. Systems of linear equations: Consistency, the matrix equation $AX = B$ of a system of linear equations, solution sets of linear systems, solution of linear systems using row reduced form.

Unit 5: 12 classes
 Eigen values and eigen vectors of a square matrix, characteristic equation of a matrix, Cayley-Hamilton theorem (statement only) and its simple applications.

Suggested Reading Books:

- S. Lang, Introduction to Linear Algebra, *Springer*.
- S.K. Mapa, Higher Algebra: Classical, *Levant*.
- S.K. Mapa, Higher Algebra: Abstract & Linear, *Levant*.
- W.S. Burnstine and A.W. Panton, Theory of equations, *Creative Media*.
- S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, *Pearson Edu. Pub. (Indian)*.
- K. Hoffman and R. Kunze, Linear algebra, *Prentice Hall India*.
- V. Sahai and V. Bist, Linear Algebra, *Narosa Pub. House*.

SEMESTER-2										
Paper Description	Calculus and Geometry			Paper Code			MATHDSC202			
Paper (Type)	DSC Course (Theory)			Credit			Marks			
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
100	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

CALCULUS AND GEOMETRY

Calculus:

Unit 1: 15 classes
 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x dx, \int \cos^n x dx, \int \sec^n x dx, \int \tan^n x dx, \int (\log x)^n dx, \int \sin^n x \cos^m x dx$ etc.

Arc length of a curve including parametric curves, area enclosed by a curve, area between two curves. volume and surface areas of solids formed by revolution of plane curve and areas problems only.

Unit 2: 15 classes

Successive derivatives, Leibnitz rule and its applications. Indeterminate forms, L'Hospital's rule and it's applications.

Concept of simple and closed curves and their parameterizations, envelopes, asymptotes, radius of curvature. Concavity, convexity, and inflection points.

Geometry:

Unit 3: 15 classes

2D: Rotation of axes and second-degree equations, pair of straight lines, classification of conics using the discriminant, polar equations of conics.

Unit 4: 15 classes

3D: Spheres, cylindrical surfaces, cones, ellipsoids, paraboloids, hyperboloids, classification of quadrics.

Suggested Reading Books:

- G. B. Thomas and R. L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer Verlag, New York.
- S. Goldberg, Calculus and mathematical analysis.
- S. K. Mapa, Introduction to Real Analysis, *Sarat Book House*.
- S. C. Malik and S. Arora, Mathematical Analysis, *New Age International*.
- U. Chatterjee and N. Chatterjee, Advanced Analytical Geometry of Two and Three Dimensions, *Academic Publishers*.
- R.M. Khan, Analytical Geometry of Two and Three Dimensions & Vector Analysis, *New Central Book Agency*.

SEMESTER-3

Paper Description	Real Analysis		Paper Code							
Paper (Type)	DSC Course (Theory)		Credit				Marks			
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
200	4 Hours/week	2 Hr. 30 Min	3	1	---	4	60	20	----	80

REAL ANALYSIS

Unit 1: **12 classes**

Finite and Infinite sets: Definitions and Examples, well-ordered properties of \mathbb{N} (statement only). Countable, Denumerable and Uncountable sets: Definitions and Examples, countability of union, intersection, product, subset, superset of countable sets, Rational numbers are countable. Uncountable subsets of \mathbb{R} .

Unit 2: **18 classes**

Review of Algebraic and order properties of \mathbb{R} , ε -neighborhood of a point in \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infima with their properties and supporting examples. Archimedean property, density property, order property of \mathbb{R} , Intervals in \mathbb{R} , Limit point and isolated point of a set. Open set, closed set, derived set and their properties. Bolzano-Weierstrass theorem on limit point. Nested interval theorem. Examples of Compact sets in \mathbb{R} , statement of Heine-Borel Theorem.

Unit 3: **15 classes**

Sequences: Sequence, bounded sequence, convergent sequence. Limit and limit points of a sequence. Uniqueness of limit of convergent sequences. Limit theorems. Monotone sequences, monotone convergence theorem. Sandwich theorem. Subsequences. Monotone subsequence theorem (statement only). Bolzano Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion. Completeness property of \mathbb{R} .

Unit 4: **15 classes**

Series: Infinite series, convergence and divergence of infinite series, Cauchy criterion (only statement). Tests for convergence (only statement and applications): comparison test, limit comparison test, D'Alembert's ratio test, Cauchy's nth root test. Absolutely convergent series (Ratio test, Root test), conditionally convergent series (Leibniz's test) and alternating series. Only problems on power series and its radius of convergence.

Suggested Reading Books:

- R. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons, 2003.
- K. A. Ross, Elementary Analysis : The Theory of Calculus, Springer, 2004.
- A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.
- S. R. Ghorpade and B. V. Limaye, a Course in Calculus and Real Analysis, Springer, 2006.
- T. Apostol, Mathematical Analysis, Narosa Publishing House.
- Courant and John, Introduction to Calculus and Analysis, ,Voll II, Springer.
- W. Rudin, Principles of Mathematical Analysis, Tata McGraw-Hill
- T. Tao, Analysis II, Hindustan Book Agency, 2006.

SEMESTER-4

Paper Description	Abstract and Linear Algebra			Paper Code							
Paper (Type)	DSC Course (Theory)			Credit				Marks			
Paper Level	Class Hours	Sem. End Exam.		L	T	P	Total	TH	TU	PRC	Total
200	4 Hours/week	2 Hr. 30 Min		3	1	---	4	60	20	----	80

ABSTRACT AND LINEAR ALGEBRA

Abstract Algebra

Unit 1 :

Groupoid, semigroup, monoid, groups, finite and infinite groups, commutative groups. Basic properties of groups. Finite semigroup with cancellation properties, semigroup containing unique solution of $ax = b$ and $xa = b$. Well-known groups: \mathbb{Z}_n , U_n , $M_n(R)$, $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, Klein's 4 group.

Unit 2:

10 classes

Subgroups and its basic properties. Union, intersection and product of subgroups, necessary and sufficient condition for a subset of a group to be a subgroup.

Unit 3:

18 classes

Order of a group, order of an element. Cyclic group and its properties, cosets, normal subgroup & quotient group and their relevant results. Lagrange's theorem and consequences including Fermat's Little theorem. Group homomorphism & isomorphism and their basic properties.

Linear Algebra

Unit 4 :

Vector spaces and its basic properties, subspaces, algebra of subspaces, linear combination of vectors, linear span, linear dependence and linear independence of vectors, basis and dimension, existence, extension and replacement theorems for basis of a finite dimensional vector space. Vector space Isomorphism, Every n dimensional vector space $V(F)$ is isomorphic to F^n . Vector spaces of Matrices over field of real and complex numbers.

Unit 4

Linear transformations, algebra of linear transformations, Range and null space of a linear transformation, rank and nullity of a linear transformation, rank-nullity theorem (statement and its applications), matrix representation of a linear transformation relative to ordered bases.

Suggested Reading Books:

- J. B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- I. Herstein, Abstract Algebra.
- M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, PHI Pvt. Ltd., New Delhi, 2004.
- J. A. Gallian, Contemporary Abstract Algebra, Narosa Publishing House, New Delhi, 1999.
- S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
- S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.
- K. Hoffman, R. A. Kunze, Linear Algebra, Prentice – Hall of India Pvt. Ltd., 1997.

Minor Courses

Sem.	Paper Code	Paper Level	Paper	Paper Description	Paper Type	TH	TU	Credit	
								L	T
1	MATHMIN101	100	MIN	Classical Algebra and Matrix Theory	TH	60	20	3	1
2	MATHMIN202	100	MIN	Calculus and Geometry	TH	60	20	3	1
3	-----	200	MIN	Real Analysis	TH	60	20	3	1
4	-----	200	MIN	Abstract and Linear Algebra	TH	60	20	3	1

DETAILED SYLLABUS

of

MINOR COURSES

(semester wise)

SEMESTER-1										
Paper Description	Classical Algebra and Matrix Theory			Paper Code			MATHMIN101			
Paper (Type)	Minor Course (Theory)			Credit				Marks		
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	
100	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

CLASSICAL ALGEBRA AND MATRIX THEORY

Classical Algebra:

Unit 1: 10 classes

Complex numbers: Polar representation, De Moivre's theorem for rational indices and its applications. Logarithm, trigonometric, exponential and hyperbolic functions of complex variable.

Unit 2: 15 classes

Theory of polynomial equations: Fundamental theorem of Classical Algebra (statement only). Location and nature of roots: Descartes' rule of signs. Relation between roots and coefficients. Solution methods for cubic and biquadratic poly. equations: Cardan's and Ferrari's method. Symmetric functions of roots, transformation of equation.

Unit 3: 8 classes

Inequality: $AM \geq GM \geq HM$, weighted means and m -th power theorem (statement only), Cauchy-Schwarz inequality (statements only) and their applications.

Matrix Theory:

Unit 4: 15 classes

Matrices: Elementary operations, elementary matrices, row/column equivalent matrix, echelon matrix, row/column reduced echelon matrix, rank of matrix, normal forms, congruence operations, congruence matrices. Systems of linear equations: Consistency, the matrix equation $AX = B$ of a system of linear equations, solution sets of linear systems, solution of linear systems using row reduced form.

Unit 5: 12 classes

Eigen values and eigen vectors of a square matrix, characteristic equation of a matrix, Cayley-Hamilton theorem (statement only) and its simple applications.

Suggested Reading Books:

- S. Lang, Introduction to Linear Algebra, *Springer*.
- S.K. Mapa, Higher Algebra: Classical, *Levant*.
- S.K. Mapa, Higher Algebra: Abstract & Linear, *Levant*.
- W.S. Burnstine and A.W. Panton, Theory of equations, *Creative Media*.
- S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, *Pearson Edu. Pub. (Indian)*.
- K. Hoffman and R. Kunze, Linear algebra, *Prentice Hall India*.
- V. Sahai and V. Bist, Linear Algebra, *Narosa Pub. House*.

SEMESTER-2										
Paper Description	Calculus and Geometry		Paper Code				MATHMIN202			
Paper (Type)	Minor Course (Theory)		Credit				Marks			
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
100	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

CALCULUS AND GEOMETRY

Calculus:

Unit 1:

15 classes

Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \sec^n x dx$, $\int \tan^n x dx$, $\int (\log x)^n dx$, $\int \sin^n x \cos^m x dx$ etc.

Arc length of a curve including parametric curves, area enclosed by a curve, area between two curves. volume and surface areas of solids formed by revolution of plane curve and areas problems only.

Unit 2:

15 classes

Successive derivatives, Leibnitz rule and its applications. Indeterminate forms, L'Hospital's rule and it's applications.

Concept of simple and closed curves and their parameterizations, envelopes, asymptotes, radius of curvature. Concavity, convexity, and inflection points.

Geometry:

Unit 3:

15 classes

2D: Rotation of axes and second-degree equations, pair of straight lines, classification of conics using the discriminant, polar equations of conics.

Unit 4:

15 classes

3D: Spheres, cylindrical surfaces, cones, ellipsoids, paraboloids, hyperboloids, classification of quadrics.

Suggested Reading Books:

- G. B. Thomas and R. L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer Verlag, New York.
- S. Goldberg, Calculus and mathematical analysis.
- S. K. Mapa, Introduction to Real Analysis, *Sarat Book House*.
- S. C. Malik and S. Arora, Mathematical Analysis, *New Age International*.
- U. Chatterjee and N. Chatterjee, Advanced Analytical Geometry of Two and Three Dimensions, *Academic Publishers*.
- R.M. Khan, Analytical Geometry of Two and Three Dimensions & Vector Analysis, *New Central Book Agency*.

SEMESTER-3										
Paper Description	Real Analysis		Paper Code							
Paper (Type)	Minor Course (Theory)		Credit				Marks			
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
200	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

REAL ANALYSIS

Unit 1: 12 classes

Finite and Infinite sets: Definitions and Examples, well-ordered properties of \mathbb{N} (statement only). Countable, Denumerable and Uncountable sets: Definitions and Examples, countability of union, intersection, product, subset, superset of countable sets, Rational numbers are countable. Uncountable subsets of \mathbb{R} .

Unit 2: 18 classes

Review of Algebraic and order properties of \mathbb{R} , ϵ -neighborhood of a point in \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infima with their properties and supporting examples. Archimedean property, density property, order property of \mathbb{R} , Intervals in \mathbb{R} , Limit point and isolated point of a set. Open set, closed set, derived set and their properties. Bolzano-Weierstrass theorem on limit point. Nested interval theorem. Examples of Compact sets in \mathbb{R} , statement of Heine-Borel Theorem.

Unit 3: 15 classes

Sequences: Sequence, bounded sequence, convergent sequence. Limit and limit points of a sequence. Uniqueness of limit of convergent sequences. Limit theorems. Monotone sequences, monotone convergence theorem. Sandwich theorem. Subsequences. Monotone subsequence theorem (statement only). Bolzano Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion. Completeness property of \mathbb{R} .

Unit 4: 15 classes

Series: Infinite series, convergence and divergence of infinite series, Cauchy criterion (only statement). Tests for convergence (only statement and applications): comparison test, limit comparison test, D'Alembert's ratio test, Cauchy's nth root test. Absolutely convergent series (Ratio test, Root test), conditionally convergent series (Leibniz's test) and alternating series. Only problems on power series and its radius of convergence.

Suggested Reading Books:

- R. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and Sons, 2003.
- K. A. Ross, Elementary Analysis : The Theory of Calculus, Springer, 2004.
- A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.
- S. R. Ghorpade and B. V. Limaye, a Course in Calculus and Real Analysis, Springer, 2006.
- T. Apostol, Mathematical Analysis, Narosa Publishing House.
- Courant and John, Introduction to Calculus and Analysis, ,Voll II, Springer.
- W. Rudin, Principles of Mathematical Analysis, Tata McGraw-Hill
- T. Tao, Analysis II, Hindustan Book Agency, 2006.

SEMESTER-4										
Paper Description	Abstract and Linear Algebra			Paper Code						
Paper (Type)	Minor Course (Theory)			Credit				Marks		
Paper Level	Class Hours	Sem. End Exam.	L	T	P	Total	TH	TU	PRC	Total
200	4 Hours/week	2 Hr. 30 Min	3	1	-- -	4	60	20	----	80

ABSTRACT AND LINEAR ALGEBRA

Abstract Algebra

Unit 1 :

Groupoid, semigroup, monoid, groups, finite and infinite groups, commutative groups. Basic properties of groups. Finite semigroup with cancellation properties, semigroup containing unique solution of $ax = b$ and $xa = b$. Well-known groups: \mathbb{Z}_n , U_n , $M_n(R)$, $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, Klein's 4 group.

Unit 2: **10 classes**

Subgroups and its basic properties. Union, intersection and product of subgroups, necessary and sufficient condition for a subset of a group to be a subgroup.

Unit 3: **18 classes**

Order of a group, order of an element. Cyclic group and its properties, cosets, normal subgroup & quotient group and their relevant results. Lagrange's theorem and consequences including Fermat's Little theorem. Group homomorphism & isomorphism and their basic properties.

Linear Algebra

Unit 4 :

Vector spaces and its basic properties, subspaces, algebra of subspaces, linear combination of vectors, linear span, linear dependence and linear independence of vectors, basis and dimension, existence, extension and replacement theorems for basis of a finite dimensional vector space. Vector space Isomorphism, Every n dimensional vector space $V(F)$ is isomorphic to F^n . Vector spaces of Matrices over field of real and complex numbers.

Unit 4

Linear transformations, algebra of linear transformations, Range and null space of a linear transformation, rank and nullity of a linear transformation, rank-nullity theorem (statement and its applications), matrix representation of a linear transformation relative to ordered bases.

Suggested Reading Books:

- J. B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.
- I. Herstein, Abstract Algebra.
- M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
- S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, PHI Pvt. Ltd., New Delhi, 2004.
- J. A. Gallian, Contemporary Abstract Algebra, Narosa Publishing House, New Delhi, 1999.
- S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
- S. Kumaresan, Linear Algebra- A Geometric Approach, Prentice Hall of India, 1999.
- K. Hoffman, R. A. Kunze, Linear Algebra, Prentice – Hall of India Pvt. Ltd., 1997.

FYUGP (Revised)

Semester-IV (IDC)

Basic Algebra

(40 Marks)

1. Introduction to Algebra

- What is algebra?
- Use of symbols (variables like x, y , etc.).
- Importance of algebra in everyday life.

2. Basic Algebraic Operations

- Addition, subtraction, multiplication, and division and factorization of algebraic expressions.
- Simple linear equations (one variable for solving simple essay type problems with one unknown).
- System of linear equations (two variables for solving essay type problems with two unknowns).

3. Word Problems and Logical Reasoning

- Translating real-world problems into algebraic expressions / equations.
- Solving age problems, number puzzles.

4. Algebra in Banking & Finance

- Simple and compound interest.
- EMI calculations.
- Personal savings and investment calculations.

5. Computer Algebra

- Representation of numbers with different bases.
- Arithmetic operations on real numbers with different bases.
- Conversion of numbers to the same numbers with different bases.